Principles, Statistical and Computational Tools for Reproducible Data Science

Today the principles and techniques of reproducible research are more important than ever, across diverse disciplines from astrophysics to political science. No one wants to do research that can鈥檛 be reproduced. Thus, this course is really for anyone who is doing any data intensive research. While many of us come from a biomedical background, this course is for a broad audience of data scientists. To meet the needs of the scientific community, this course will examine the fundamentals of methods and tools for reproducible research. Led by experienced faculty from the Harvard T.H. Chan School of Public Health, you will participate in six modules that will include several case studies that illustrate the significant impact of reproducible research methods on scientific discovery. This course will appeal to students and professionals in biostatistics, computational biology, bioinformatics, and data science. The course content will blend video lectures, case studies, peer-to-peer engagements and use of computational tools and platforms (such as R/RStudio, and Git/Github), culminating in a final presentation of a final reproducible research project. We鈥檒l cover Fundamentals of Reproducible Science; Case Studies; Data Provenance; Statistical Methods for Reproducible Science; Computational Tools for Reproducible Science; and Reproducible Reporting Science. These concepts are intended to translate to fields throughout the data sciences: physical and life sciences, applied mathematics and statistics, and computing. Consider this course a survey of best practices: we鈥檇 like to make you aware of pitfalls in reproducible data science, some failure - and success - stories in the past, and tools and design patterns that might help make it all easier. But ultimately it鈥檒l be up to you to take the skills you learn from this course to create your own environment in which you can easily carry out reproducible research, and to encourage and integrate with similar environments for your collaborators and colleagues. We look forward to seeing you in this course and the research you do in the future!

Created by: Harvard University

Level: Intermediate

Find Out More
Share
Facebook
Twitter
Pinterest
Reddit
StumbleUpon
LinkedIn
Email

Cal Poly Online Courses

Back to Top

Log In

Contact Us

Upload An Image

Please select an image to upload
Note: must be in .png, .gif or .jpg format
OR
Provide URL where image can be downloaded
Note: must be in .png, .gif or .jpg format

By clicking this button,
you agree to the terms of use

By clicking "Create Alert" I agree to the Uloop Terms of Use.

Image not available.

Add a Photo

Please select a photo to upload
Note: must be in .png, .gif or .jpg format